Low-Cost Large Aperture Telescopes for Optical Communications

H. Hemmati

Jet Propulsion Laboratory California Institute of Technology

August 15, 2006

Background:

- ➤ Low-cost 0.5-1 meter ground apertures are required for near-Earth laser-communications
- ➤ Low-cost ground apertures with equivalent diameter ≥10-m are desired for deep-space communications

Objective:

- ➤ Identify schemes to lower the cost of constructing networks of large apertures
 - ➤ Meeting the requirements for laser-communications

Photon Collectors vs. Astronomical Telescopes

Requirement	Astronomical Telescope	Photon-Collector for Lasercom	
Image quality	Diffraction-limited	N/A	
		≤ 20X diffraclimit	
Field-of-view	Large	Small	
Operation	Night-time	Daytime &	
		Night-time	
Quantity	One of a kind	Multiple	
Reliability	Moderate	High	

Requirements

Transmit/Receive Receive-Only

Wavelength0.8 to 1.6 μm

> Equivalent aperture 0.5 to 1 m diameter (for near-Earth)

10 m (minimum for deep space)

➤ Telescope surface figure < 20X diffraction-limit

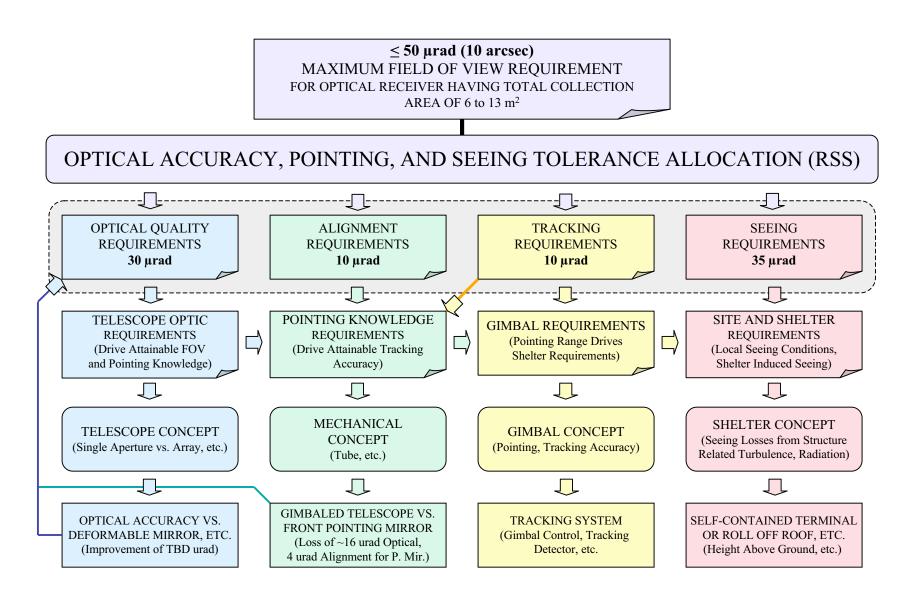
➤ Sky Coverage Within 5° of the sun, goal 1°

Detection
Direct (incoherent)

Field-of-view ~ 50 μrad

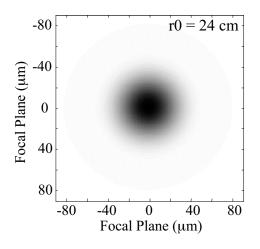
 \gt Strehl $\gt 0.8$

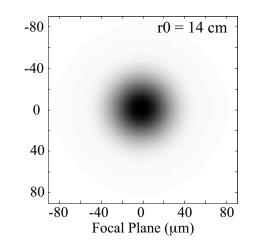
> Spot diameter < 0.05 to 1 mm (higher w/ arrays)

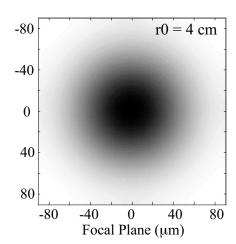

> Atmospheric seeing 5-10 μrad (night-time)

25-100 µrad (daytime)

> Tracking Sidereal & HEO rates (for deep space)


Operation
Day & Night


Flow of Optical Terminal Telescope Array Trades; Driving Requirements



Atmosphere's Contribution to Telescope Spot Size

Actual spot spread function size is driven by atmospheric turbulence (as quantified by the Fried parameter, r_0):

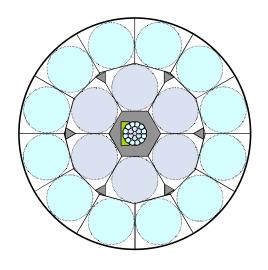
Assumptions:

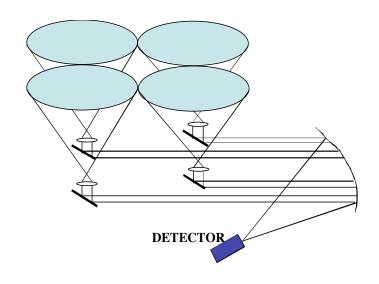
No Adaptive Optics system

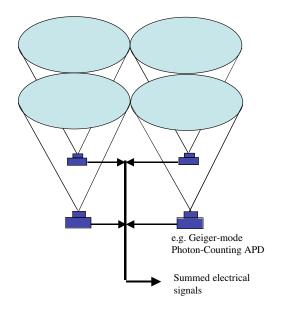
20 times diffraction limit telescope spot size = 104μm @ 1000nm

F/# 2 telescope with 3m focal length

Architecture Trades

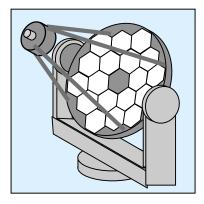

Viable options to identify lowest cost mirrors:

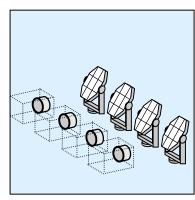

- ➤ Single monolithic large apertures
- ➤ Single segmented large apertures
- > Array of 0.5 to 2.5-m diameter telescopes

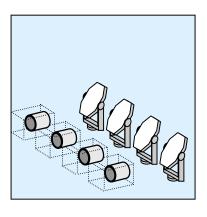

Conclusions:

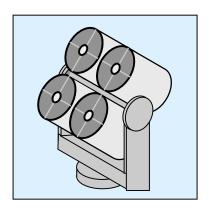
- An array of telescopes 1-m to 2-m in diameter meets the requirements and provides the lowest cost option.
- ➤ A spherical primary mirror along with a spherical aberrations corrector yields significantly lower cost
- ➤ A 200 X diffraction-limited (10 waves) mirror corrected to 20X diffraction limit (1 wave) also lowers costs significantly

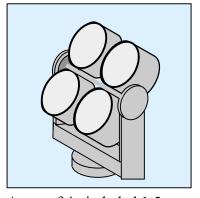
Architectures

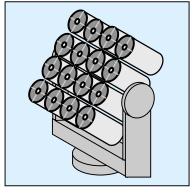


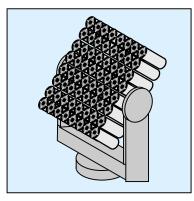

Segmented
Primary mirror
Spherical
Hobby-Eberly
Telescope


Concepts for Low Cost Optical Terminal

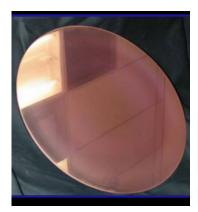

Single 3 meter aperture with eighteen 0.7 meter hexagonal mirror segments.


Array of 4 fixed 1.5 m telescopes, each with gimbaled 2.1 x 2.7 meter segmented pointing mirror.


Array of 4 fixed 1.5 m telescopes or, each with gimbaled 2.1 x 2.7 meter composite pointing mirror.


Array of 4 gimbaled 1.5 meter reflecting telescopes,

Array of 4 gimbaled 1.5 meter Fresnel lenses



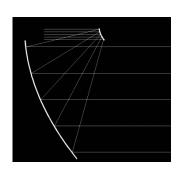
Sixteen 75 cm f/4 primary mirror segments,

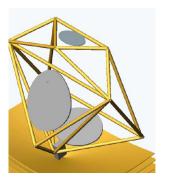
Sixty-four 37 cm f/4 primary mirror segments

Potentially Low-Cost Large Optical Apertures

Nano-Laminate Mirror (w/active surface correction) 1-m built (JPL/LLNL)

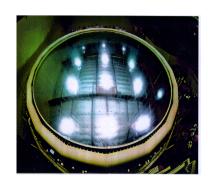
Replicated Mirror Scalable to >5m (commercial manufacturers)


Composite Optics Scalable to > 3.5 m(COI)


Spin-cast Polymer Scalable to >10-m U. of S. Carolina / JPL

Fresnel Lenses 5-m built

Cylindrical Primary Mirrors Dual Anamorphic Reflector Scalable to >25m (JPL R&D) Scalable to >25m (JPL R&D) Scalable to multi-meter



Electro-formed

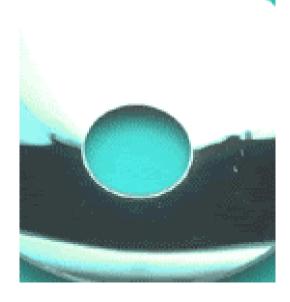
Inflated Parabloidal 5m and 10m Diameter (SRS/AFRL)

Parabolic Membrane Mirror 14-m Dia. built (AFRL)

Potentially Low-Cost Large Optical Apertures

JPL's current experimental approaches:

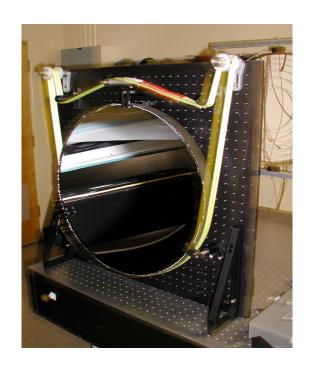
- 1. Spherical mirror slumped glass + passive aberration corrector + active optics compensator
- 2. Parabolic polymer mirror + active optics compensator
- 1. Fresnel lens + active optics compensator



1.5-m beam collimator "Test Equipment"

1.5-m Slumped Glass

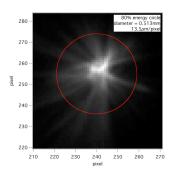
1-m to 3.5-m replicated glass mirror


- ➤ Slumped glass technique utilizing a precision mold
- ➤ Both spherical and parabolic mirror are possible
- ➤ Minimal post polishing, sutface quality 10waves to > 100 waves (at 1-µm)

Spin-Cast Polymer Mirror

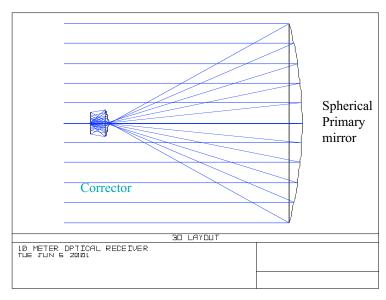
1-m to 3.5-m spun-cast polymer mirror

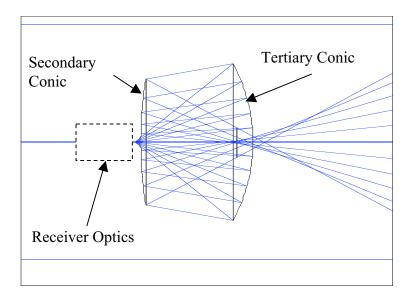
- ➤ Spin-casting of polymers, multiple layers with decreasing thickness
- > Spherical and off-axis spherical mirrors
- ➤ Fabrication time < 10 days
- ➤ No post polishing
- ➤ Surface quality 1-wave to ~100 waves
- ➤ 0.6-m fabricated at U. of S. Carolina. Developing a 2-m version now under contract with JPL


0.6-m Polymer Mirror

Large Diameter Diamond-Turned Fresnel Lenses

Multi-meter custom-made Fresnel lenses are promising, since

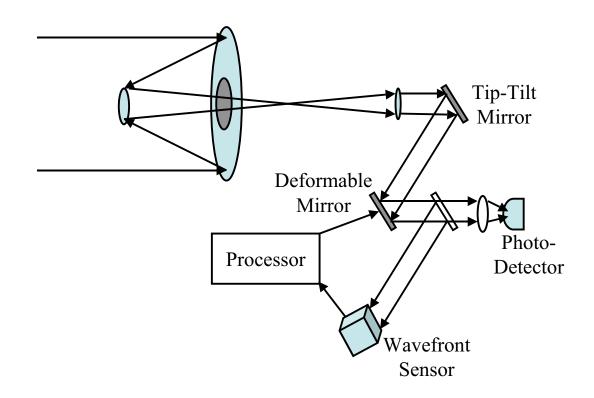

- ➤ Operation is at single wavelength (eliminates chromatic aberration)
- > Field-of-view is very narrow (minimizes stray light)



ORA/JPL Designed, LLNL-diamond-turned 0.6-meter diameter Fresnel lens Generates 0.51-mm spot size

Spherical Aberration Corrector (for spherical mirror)

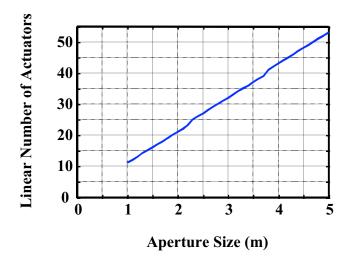
Telescope system using segmented spherical primary with corrector

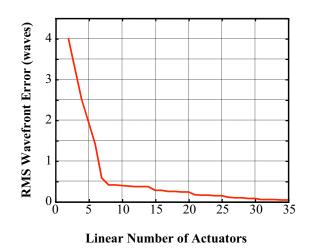


Expanded view of "clamshell" correction system

Surface Error Correction w/ Deformable Mirrors "Active Optics Compensation"

Goal:

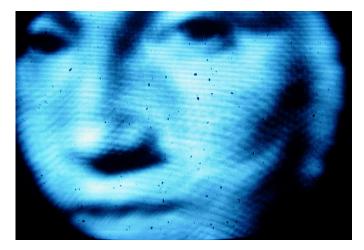

Reduce the slowly varying surface wavefront error of low-cost multi-meter-diameter mirrors from about 10 waves peak-to-valley, at 1 µm wavelength, to approximately 1-wave or less.


- Makes use of low-cost deformable mirrors
- Tip-tilt mirror added for the first order correction of atmosphere
- The wavefront sensor is being replaced with a simple focal plane or detector

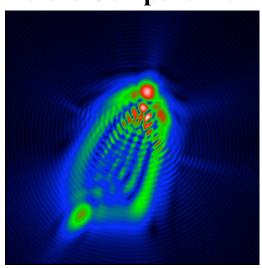
The Required Number of Actuators

The required number of actuators is dictated by both the nature of aberration and aperture size.

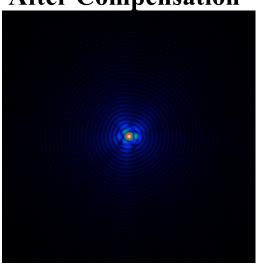
The required number of actuators for reducing RMS from 4 waves to 0.27 waves with telescope aperture diameters in the 1-5m range, assuming a fixed power spectrum.

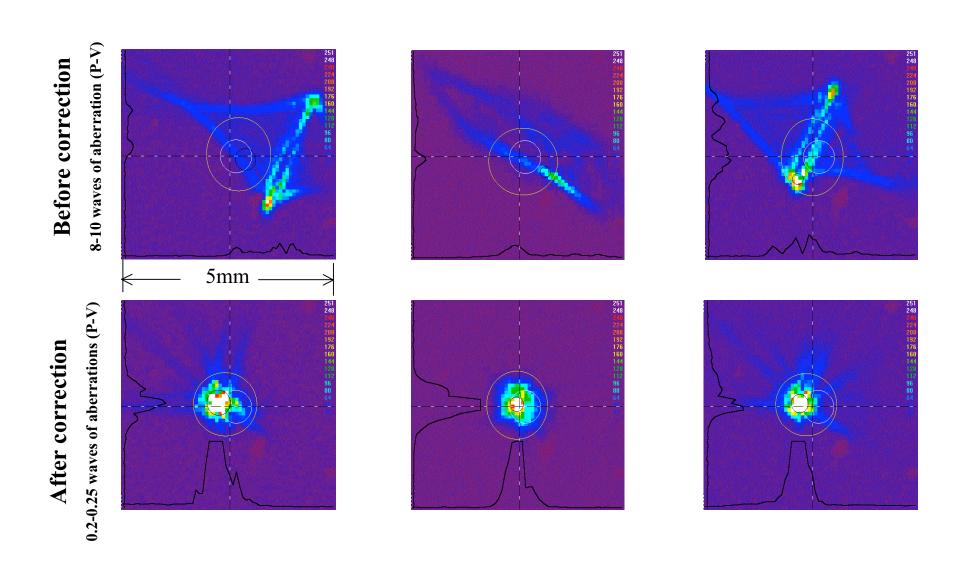


Simulated for a 1.5m diameter mirror 20 linear actuators refer to a two-dimensional 20x20 element DM.

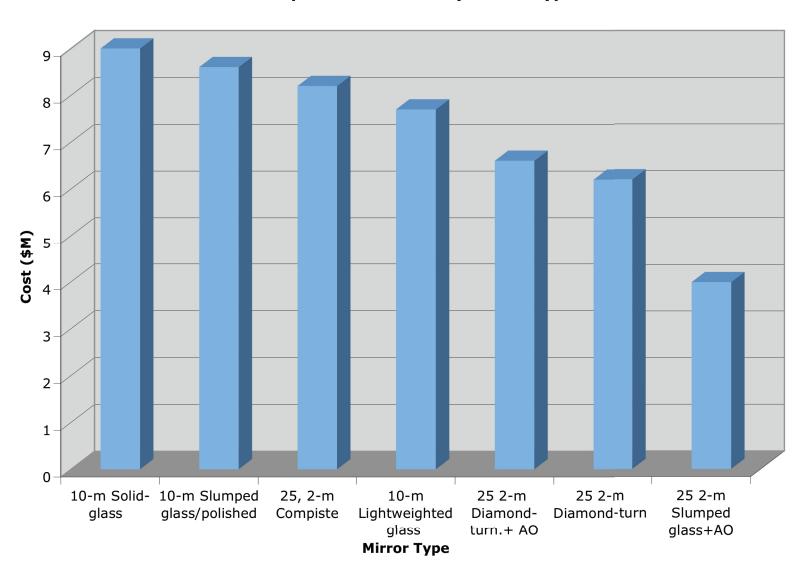

Wavefront quality improves with increased numbers of actuators

Experimental Results (with a 0.3-m Mirror)


Before: 6.5 waves P-V at 633nm **After:** 0.26 P-V at 633nm


Before Compensation

Example of Correction w/ Deformable Mirror



Estimated Cost of Certain Telescope Options for a 10-m Equivalent aperture

Primary Mirror	Surface Figure (µ)	Primary Cost (\$M)	Mirror Support Cost (\$M)	Gimbal Cost (\$M)	Actuator Cost (\$M)	Total Cost (\$M)
10-m Solid-glass spherical panels	1	2	2	3	2	9
10-m Slumped glass spherical panels + polishing	2	1.6	2	3	2	8.6
Array of 25, 2-m Composite optics	2	5	1.2	2	0	8.2
10-m Lightweighted glass multiple-panel actuated	1	2.7	1	2	2	7.7
Array of 25 2-m Diamond- turned + active optics	1	3	1.2	2	0.4	6.6
Array of 25 2-m Diamond-turned mirror	6	3	1.2	2	0	6.2
Array of 25 2-m Slumped glass + active optics	1	0.4	1.2	2	0.4	4

Estimated Cost of 10m Spherical Collector Primary

Telescope Cost vs. Primary Mirror Type

Summary

Options for fabrication low-cost large-apertures for ground reception of optical communications where traded

Primary emphasis here is on the primary mirror

A slumped glass spherical mirror, along with passive secondary mirror corrector and active adatptive opticve corrector shoew promise as a low-cost alternative to large diameter monolithic apertures

To verify the technical performance and cost estimates, development of 1.5-meter telescope equipped with gimbal and dome, is underway